Tammy Dahligren, Tom Epperly,
Scott Kohn, & Gary Kumfert



1 Describe our vision to the CCA

1 Solicit contributions (code) for:
0 RMI (SOAP | SOAP w/ Mime types)
1 Parallel Network Algs (general arrays)

1 Encourage Collaboration

CASC



Outline

1 Background on Components @linl.gov

1 General MxN Solution : bottom-up
O Initial Assumptions
1 MUX Component
1 MxNRedistributable interface

1 Parallel Handles to a Parallel Distributed
Component

1 Tentative Research Strategy

CASC




Components @linl.gov

1 Quorum - web voting

1 Alexandria - component repository

1 Babel - language interoperability
[ maturing to platform interoperability
» ... Implies some RMI mechanism
» SOAP | SOAP w/ MIME types

» open to suggestions,
& contributed sourcecode

CASC



Babel & MxN problem

1 Unique Opportunities
1 SIDL communication directives
1 Babel generates code anyway

[ Users already link against Babel
Runtime Library

1 Can hook directly into Intermediate
Object Representation (IOR)

CASC



Impls and Stubs and Skels

1 Application: uses components in

‘ Application ‘

user’s language of choice
= = | . guag
‘ Stub ‘ 0 Client Side Stubs: translate from
ubs application language to C
~~~— . :

0 Internal Object Representation:

| 10Rs |

Always in C
1 Server Side Skeletons: translates

—~
‘ Skels ‘ IOR (in C) to component
~

implementation language

‘ Impls 0 Implementation: component
developers choice of language.

(Can be wrappers to legacy code)
CASC oKK 6




Out of Process Components

‘ Application ‘
~=

| sStubs | PC |
~ ~—

| 10Rs | IORs |
< <

| IPC | Skels |

<

CASC




Remote Components

‘ Application ‘ Line Protocol‘
= =

‘ Stubs ‘ ‘Unmarshaler‘
- -

| 10Rs | | 10Rs |
= =

‘ Marshaler ‘ ‘ Skels ‘
<= <

‘Line Protocol ‘ Impls ‘

CASC




Outline

[]

*General MxN Solution : bottom-up
7 Initial Assumptions
]
]

CASC



Initial Assumptions

1Working Point-to-Point RMI
1 0bject Persistence

CASC



Example #1: 1-D Vectors

‘ § double d = x.dot(y );
PO | 0.0 1.1 ‘
y
P3| 9 8 7
X
p1| 22 33
y
P4 | 6.5 4
* \
P2 | 4.4 55

CASC



Example #1: 1-D Vectors

‘ « double d = x.dot(y );

O int localSize = 2;
p int[ ]

local2global = {0, 1};
double[ ] localData ={ 0.0, 1.1 }; y

int globalSize = 6;
p 3 int localSize = 3;

int[ ] local2global = {0, 1,2 };
X double[ ] localData ={ .9, .8, .7 };

int globalSize = 6;
1 int localSize = 2;
p int[ ] local2global = {2, 3 };
double[ ] localData ={2.2, 3.3 };

y

4 int globalSize = 6;
p int localSize = 3;
int[ ] local2global ={3,4,5};
X double[ ] localData ={ .6, .5, .4 };
int globalSize = 6;

p2 int localSize = 2;

int[ ] local2global = {4, 5 };
double[ ] localData ={4.4,5.5};

CASC

GKK 12



Rule #1: Owner Computes

double vector::dot( vector& y ) {

CASC

/I initialize
double * yData = new double[localSize];
y.requestData( localSize, local2global, yData);

[/ sum all x[i] * y[i]

double localSum = 0.0;

for( int i=0; i<localSize; ++i) {
localSum += |localDatali] * yDatali];

}

Il cleanup
delete[] yData;
return locaIMPIComm.globalSum( localSum );

GKK 13



Design Concerns

1 vector y is not guaranteed to have data
mapped appropriately for dot product.

1vector y is expected to handle MxN data
redistribution internally

y.requestData( localSize, local2global, yData);

1 Should each component implement
MxN redistribution?

CASC



Outline

[]
[]

0]
*MUX Component
0

CASC



Vector Dot Product: Take #2

double vector::dot( vector& y ) {
/I initialize
MUX mux( *this, y );

double * yData =
mux.requestData( localSize, local2global );

[/ sum all x[i] * y[i]

double localSum = 0.0;

for( int i=0; i<localSize; ++i) {
localSum += |localDatali] * yDatali];

}

Il cleanup
mux.releaseData( yData );
return locaIMPIComm.globalSum( localSum );

CASC GKK 16



Generalized Vector Ops

vector<T>::parallelOp( vector<T>& y) {

CASC

I/ initialize
MUX mux( *this, y );
vector<T> newY =
mux.requestData( localSize, local2global );

// problem reduced to a local operation

result = x.localOp( newY );

Il cleanup

mux.releaseData( newY );

return  localIMPIComm.reduce( localResult );

GKK 17



Rule #2: MUX distributes data

1Users invoke parallel operations without
concern to data distribution

1Developers implement local operation
assuming data is already distributed

1 Babel generates code that reduces a
parallel operation to a local operation

0 MUX handles all communication
1How general is a MUX?

CASC




Example #2: Undirected Graph




Key Observations

1 Every Parallel Component is a container
and is divisible to subsets.

1 There is a minimal (atomic) addressable
unit in each Parallel Component.

1 This minimal unit is addressable in
global indices.

CASC




Atomicity

1 Vector (Example #1):
- atom - scalar
7 addressable - integer offset

0 Undirected Graph (Example #2):
1 atom - vertex with ghostnodes
0 addressable - integer vertex id

0 Undirected Graph (alternate):
- atom - edge
- addressable - ordered pair of integers

CASC GKK 21



Outline

[]

(]
»MxNRedistributable interface
]

CASC



MxNRedistributable Interface

interface Serializable {

store( in Stream s );
load( in Stream s );

I3
interface MxNRedistributable extends Serializable {

int getGlobalSize();
local int getLocalSize();
local array<int,1> getLocal2Global();

split ( in array<int,1> maskVector,
out array<MxNRedistributable,1> pieces);

merge( in array<MxNRedistributable,1> pieces);

CASC GKK 23



Rule #3: All Parallel Components
implement “MxNRedistributable”

1 Provides standard interface for MUX to
manipulate component

7 Minimal coding requirements to
developer

1 Key to abstraction
1 split()
[ merge()
1 Manipulates “atoms” by global address

CASC




Now for the hard part...

... 13 slides illustrating how it all
fits together for an
Undirected Graph

CASC



%> mpirun -np 2 graphtest

pid=1

CASC



BabelOrb * orb =
BabelOrb.connect( “http://...”);

orb

orb

pid=1

CASC KKKKK



Graph * graph = orb->
create(“graph”,3);

orb

graph |

orb

graph \

CASC GKK 28



graph->load(“file://...”’);

orb

CASC GKK 29



graph->doExpensiveWork();

orb

orb

CASC GKK 30



PostProcessor * pp =
new PostProcessor;

orb | | pp

graph
i2

A J ‘.
n n
n ‘:.
'Y *
Illl’ |-
* a
SRl
N
. ‘ *
L 4 L}
= |- = a=
graph| 2 A

CASC GKK 31



pp->render( graph );

0 MUX queries graph for
global size (12)

orb | | pp

I
require

gra

0 Graph determines
particular £
data layout | "
(blocked) ‘

0 MUX is
invoked to
guarantee

orb| | pp

I
require

i9r G
that layout before render| :
implementation is called

gra

- O O 00 N O

AA

CASC GKK 32



MUX solves general parallel
network flow problem (client & server)

0
orb | PP ] I 0,1,2, 3
I
gra require g 5
4 2} iy {5
5 41 5 E ’ ‘i.
161
orb| |pp| || © 6,7 5
e B | 9 At :
919 require g
10 8,9, 10, 11
11

CASC GKK 33



MUX opens communication pipes

orb | | pp

I
require

gra

orb| |pp

I
require

gra

- O O 00 N O

AA

CASC GKK 34



MUX splits graphs with multiple
destinations (server-side)

orb | | pp

I
require

gra

orb| |pp

I
require

gra

- O O 00 N O

AA

CASC GKK 35



MUX sends pieces through
communication pipes (persistance)

orb | | pp

gra

require

orb| |pp

I
require

gra

CASC



MUX receives graphs through pipes
& assembles them (client side)




pp -> render_impl( graph );
(user’s implementation runs)




Outline

[]

arallel Handles to a Parallel Distributed
Component

CA

SC




11 All distributed components are containers
and subdivisable

1 The smallest globally addressable unit is an
atom

1 MxNRedistributable interface reduces general
component MxN problem to a 1-D array of ints

1 MxN problem is a special case of the general
problem N handles to M instances

1 Babel is uniquely positioned to contribute a
solution to this problem

CASC GKK 40



Outline

*Tentative Research Strategy

CASC



Tentative Research Strategy

Fast Track Sure Track

1 Java only, no Babel 1 Finish 0.5.x line

] serialization &
RMI built-in

0 Build MUX
1 Experiment

1 add serialization

1 add RMI
1 Write Paper

1 Add in technology
from Fast Track

CASC GKK 42



Open Questions

1Non-general, Optimized Solutions

11 Client-side Caching issues
7 Fault Tolerance
1 Subcomponent Migration

O Inter vs. Intra component
communication

0 MxN , MxP, or MxPxQxN

CASC



MxPxQxN Problem

., ,

I

MO\

M

Long-Haul Netwcx&

CASC



MxPxQxN Problem

a4 s

N

A

/ /

CASC






UCRL-VG-142096

Work performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48

CASC GKK 47



	Tammy Dahlgren, Tom Epperly, Scott Kohn, & Gary Kumfert
	Goals
	Outline
	Components @llnl.gov
	Babel & MxN problem
	Impls and Stubs and Skels
	Out of Process Components
	Remote Components
	Outline
	Initial Assumptions
	Example #1:  1-D Vectors
	Example #1:  1-D Vectors
	Rule #1:  Owner Computes
	Design Concerns
	Outline
	Vector Dot Product: Take #2
	Generalized Vector Ops
	Rule #2: MUX distributes data
	Example #2: Undirected Graph
	Key Observations
	Atomicity
	Outline
	MxNRedistributable Interface
	Rule #3:  All Parallel Components implement “MxNRedistributable”
	Now for the hard part...
	%> mpirun -np 2 graphtest
	BabelOrb * orb = BabelOrb.connect( “http://...”);
	Graph * graph = orb->create(“graph”,3);
	graph->load(“file://...”);
	graph->doExpensiveWork();
	PostProcessor * pp = new PostProcessor;
	pp->render( graph );
	MUX solves general parallel network flow problem (client & server)
	MUX opens communication pipes
	MUX splits graphs with multiple destinations (server-side)
	MUX sends pieces through communication pipes (persistance)
	MUX receives graphs through pipes & assembles them (client side)
	pp -> render_impl( graph );(user’s implementation runs)
	Outline
	Summary
	Outline
	Tentative Research Strategy
	Open Questions
	MxPxQxN Problem
	MxPxQxN Problem
	The End

